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We discuss theoretically the Goos-Hänchen �GH� shifts of the reflected waves from a cold, inhomogeneous,
and magnetized plasma slab by using the invariant imbedding approach. Aiming at the linear and parabolic
electron-density profiles, we demonstrate numerically the dependences of the co- and cross-polarized GH shifts
on the angle of incidence, external static magnetic field, and the thickness of the plasma slab. The results show
that the different electron-density profiles of plasma can result in the very different dependences of the GH
shifts on the angle of incidence, external magnetic field, and the slab’s thickness; the GH shifts can be switched
between the considerably large positive and negative values under certain conditions. Particularly, without
altering the structure of the plasma slab, the GH shifts can be manipulated by modifying the angle of incident
or the external static magnetic field.
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I. INTRODUCTION

As has been known, the reflected beam can experience a
lateral shift with respect to the path predicted by geometrical
optics when a total internal reflection happens at the interface
separating two media. This lateral shift is the so-called Goos-
Hänchen �GH� shift. Since it was discovered by Goos and
Hänchen �1,2� and explained theoretically by Artmann �3� in
the late 1940s, the GH shift has long been a subject of ex-
tensive research in various fields such as micro- and nano-
optics �4�, acoustics, quantum mechanics, and plasma phys-
ics . In practice, the GH shift effect is not confined to the
total internal reflection situation; during partial reflection,
this effect can also show up, especially in the slab configu-
rations, where both the reflected and transmitted beams
might undergo a lateral shift. In this regard, much work has
been conducted in different circumstances, such as transpar-
ent dielectric slabs �5–11�, negatively refractive slab �12–14�,
indefinite medium slab �15�, slab of electro-optic crystal
�16�, and gyrotropic slab �17�.

Theoretically, the GH shift is usually studied on the basis
of the stationary-phase approach, which is mainly revealed
by the Artmann’s formula �3,5–19�, i.e., �=−�� /�kx, where
� is the phase shift of the reflected or transmitted beam with
respect to the incident beam and kx is the wave-vector com-
ponent parallel to the interface. Clearly, the physical and
structured parameters of the materials, such as the permittiv-
ity, permeability, and the periodicity and layer thicknesses of
constituents, affect the phase shifts as well as the surface �or
interface� properties and hence cause the changes of the GH
shifts. In consequence, the GH shifts can be controlled by
modulating the permittivity, permeability, and structures of
the materials. Chen et al. �16� achieved the tunable GH shifts
in electro-optic crystals by virtue of the applied electric field;
Huang et al. �17� obtained the positive and negative GH
shifts by adjusting the applied magnetic field; Wang et al.

�18� controlled the GH shift via a coherent driving field. The
GH shift effect in photonic crystals �19,20� and in the pro-
cess of surface-polariton excitation �13,21,22� should origi-
nate from the changes of structures and surface �or interface�
properties.

The GH shift effect in the homogeneous media has been
explored extensively; however, so far the studies of the GH
shift in inhomogeneous media have been still missing, which
might be due to the great difficulties in theory. More recently,
Kim et al. �23� presented a new version of the invariant
imbedding theory for the propagation of coupled waves in
arbitrarily inhomogeneous stratified media, and applied it
successfully to the study of mode conversion in inhomoge-
neous plasmas �24,25�. The main idea of this theory is to
transform the original boundary-value problem of wave
equations, which are second-order differential equations, into
an initial value problem of coupled first-order ordinary dif-
ferential equations for the reflection and transmission coeffi-
cients and the electric and magnetic field amplitudes. Em-
ploying the theory, one can obtain exact solutions for the
reflection and transmission coefficients and the field ampli-
tudes inside arbitrarily inhomogeneous stratified media, in-
cluding stratified nonlinear �26� and random �27� media.
Based on this theory, in this paper, we discuss theoretically
the GH shifts of the reflected waves from a cold, inhomoge-
neous, and magnetized plasma slab, where the inhomogene-
ity stems from the inhomogeneous electron density. Here, the
inhomogeneity and the applied magnetic field are actually
responsible for the tunings of the plasma’s permittivity.
Therefore, it is potentially possible to yield a number of new
phenomena in such materials.

In Sec. II, we present the invariant imbedding equations
for the reflection and transmission coefficients and the GH
shifts determined by the stationary-phase approach. Aiming
at two kinds of electron-density profiles, i.e., the linear and
parabolic profiles, the dependences of the GH shifts of the
co- and cross-polarized components in the reflected wave on
the angle of incidence, applied magnetic field, and thickness
of the plasma slab are illustrated in Sec. III. The main con-
clusions are summarized in Sec. IV.
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II. MODEL AND COMPUTATIONAL METHOD

Consider a cold, inhomogeneous, and magnetized plasma
slab in air occupying the range 0�z�L, where both the
electron density ne and the dielectric permittivity �J are only z
dependent. Let an arbitrarily polarized plane monochromatic
electromagnetic wave of angular frequency � be incident at
an angle � on the interface z=L from the right, as sketched in
Fig. 1. For simplicity, we restrict our attention to the case
where the external static magnetic field is applied perpen-
dicularly to the direction of inhomogeneity, viz., B� 0=B0x̂,
with x̂ being the unit vector along the x direction. For the
above geometry, the permittivity tensor �J of the cold plasma
for high-frequency wave is written as

�J = ��3 0 0

0 �1 − i�2

0 i�2 �1
� , �1�

with

�1 = 1 −
�p

2�� + i��
���� + i��2 − �c

2�
, �2 =

�p
2�c

���� + i��2 − �c
2�

,

�2�

�3 = 1 −
�p

2

��� + i��
,

where the constant � is the phenomenological collision fre-
quency; �c=eB0 /2m is the electron cyclotron frequency and
e and m are the electron’s charge and mass, respectively. For
the inhomogeneous electron density, it will be convenient to
express the plasma frequency �p as

�p
2 =

e2

m�0
ne�z� = �0

2f�z� , �3�

where �0=�n0e2 /m�0 is the local plasma frequency, n0 is the
local electron density, and f�z�, a dimensionless function of

z, describes the electron-density profiles. So, Eq. �2� can be
rewritten in the z-dependent form

�1 = 1 −
�0

2�� + i��f�z�
���� + i��2 − �c

2�
, �2 =

�0
2�cf�z�

���� + i��2 − �c
2�

,

�4�

�3 = 1 −
�0

2f�z�
��� + i��

.

Evidently, �1, �2, and �3 are all the functions of the spatial
coordinate z.

As known, there exist two eigenmodes in the magnetized
plasma, called the ordinary �O� and extraordinary �X� modes,
respectively, but the O and X modes are no longer the eigen-
modes and couple to each other if the plasma is inhomoge-
neous. Anyway, the electric and magnetic fields of waves in
the plasma slab must satisfy the following equations, as de-
rived from Maxwell’s equations:

�� 	 ��� 	 E� � = k0
2�J · E� , �5a�

�� 	 ��J−1�� 	 
0H� � = k0
2
0H� , �5b�

where k0=� /c and 
0=��0 /�0 are the wave vector and
wave impedance in vacuum, respectively, and c is the speed
of light in vacuum. For an arbitrarily polarized plane wave
propagating within the xz plane, we assume that all field
components without the y dependence depend on x and t
through a factor ei�qx−�t�, where q=k0 sin � is the x compo-
nent of the wave vector. Eliminating Ex, Ez, Hx, and Hz from
Eq. �5�, we can obtain two coupled-wave equations obeyed
by the z-dependent field components Ey�z� and Hy�z�. Owing
to their continuities at the interface, we introduce a two-
component wave function �= �

Ey


0Hy
�, which is obviously con-

tinuous at the interface, and then we have the wave equation
in �,

d

dz
�A−1d�

dz
	 − k0

2M� = 0, �6�

with the two z-dependent 2	2 matrices

A = � 0 − 1

�3 0
	, M =� i

�2

�1
sin �

sin2 �

�1
− 1

�1 −
�2

2

�1
− sin2 � i

�2

�1
sin � � .

�7�

Following the invariant imbedding theory generalized by
Kim et al. �23�, we must extend � to a 2	2 matrix, i.e., 


= �
Ey1 Ey2


0Hy1 
0Hy2
�, where the first column vector stands for the

wave function when the incident wave is Ey, i.e., the
s-polarized wave, and the second column vector for the wave
function when the incident wave is Hy, i.e., the p-polarized
wave. We are interested in the 2	2 reflection and transmis-
sion coefficient matrices r�L� and t�L�, which consist in the
wave functions of the incident and transmissive regions,
namely,

x

O
z

L

θ

∆

−∆
airair

ε�

FIG. 1. Schematic of the cold, inhomogeneous, and magnetized
plasma slab. External static magnetic field is directed along the x
axis. Dashed line is the path of reflection usually expected from
geometrical optics. Inset in the upper left shows the linear and
parabolic electron-density profiles.
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�z� = 
e−iP�z−L� + eiP�z−L�r�L� , z � L

e−iPzt�L� , z � 0,
� �8�

where P is a 2	2 diagonal matrix satisfying P= Ik0 cos �
and I is the unit matrix. The element r11�r21� of r is the
reflection coefficient of the s�p�-polarized component in the
reflected wave when the incident wave is s polarized �i.e.,
Ey�. Likewise, r22�r12� is the reflection coefficient of the
p�s�-polarized component in the reflected wave when the in-
cident wave is p polarized �i.e., Hy�. Similar definitions can
be applied to the transmission coefficient matrix t �23�. In
light of the invariant imbedding theory and after some
lengthy algebra, we derive the invariant imbedding equations
for r��� and t��� as functions of the so-called imbedding
variable �,

dr

d�
= i�rAA1

−1P + AA1
−1Pr� −

i

2
�I + r��AA1

−1P + k0
2P−1A1M�

	�I + r� , �9a�

dt

d�
= itAA1

−1P −
i

2
t�AA1

−1P + k0
2P−1A1M��I + r� , �9b�

where the matrix A1= � 0 −1
1 0 � is defined by Eq. �7� by setting

�3=1 for air �the incident medium� and I is the 2	2 unit
matrix. With the initial conditions r�0�=0 and t�0�= I, we can
integrate Eqs. �9a� and �9b� numerically from �=0 to �=L
and obtain the reflection and transmission coefficient matri-
ces r and t. The field amplitude 
�z� inside the inhomoge-
neous plasma can also be calculated by

d
�z,l�
d�

= i
�z,l�AA1
−1P −

i

2

�z,l��AA1

−1P + k0
2P−1A1M�

	�I + r�l�� , �9c�

where 
 is regarded as a function of z and �. For a given
z�0�z�L�, 
�z ,L� is obtained by integrating this equation,
along with Eq. �9a�, from �=z to �=L with the initial con-
dition 
�z ,z�= I+r�z ,z�. Then, from Maxwell’s equations,
we can express the field components Ez and Hz in terms of Ey
and Hy,

Ez = −
sin �

�1

0Hy − i

�2

�1
Ey, 
0Hz = Ey sin � . �10�

Bearing r and t obtained just in mind, we then discuss the
GH shifts in terms of the stationary-phase approach. Let
rjm= �rjm�exp�i� jm�=ajm+ ibjm, where j, m=1, 2, ajm and bjm
are the real and imaginary parts of rjm, respectively, and � jm
is the phase of rjm. For a given frequency � �or wavelength
��, the GH shifts � jm of the reflected wave for the different
polarized components can be determined by �28�

� jm = −
�� jm

�q
=

�

2� cos �

bjmajm� − ajmbjm�

Rjm
, �11�

where Rjm= �rjm�2 is the reflectivity and ajm� �bjm� �=
�ajm�bjm�

�� .
Yet, it is worthwhile to notice that � jm depends not only on
�, but also on other variables such as �c �or the external
static magnetic field� and the slab’s thickness. � jm have the

definitions similar to rjm, that is, �11��21� is the GH shift of
the s�p�-polarized component in the reflected wave when the
incident wave is s polarized. Similarly, �22��12� is the GH
shift of the p�s�-polarized component in the reflected wave
when the incident wave is p polarized. �11 and �22 are called
the copolarized GH shifts, whereas �12 and �21 are the cross-
polarized ones. Because r12=−r21, we have from Eq. �11�
�12=�21 at any angles of incidence. Moreover, we should
stress here that since the s- and p-polarized components of
the reflected wave suffer different GH shifts, they become
two separate reflected waves, which is dissimilar to the result
usually predicted by geometrical optics.

III. NUMERICAL RESULTS AND DISCUSSION

In our calculations, we choose the operating frequency at
the local plasma frequency, i.e., �=�0, and the collision fre-
quency �=10−8�0. To examine the effects of the medium’s
inhomogeneity on the GH shifts, below we consider two
types of electron-density profiles.

A. Linear electron-density profile

In this case, we assume that f�z� is of the form

f�z� =
1

2
� z

L
+ 1	, 0 � z � L , �12�

the curve of which versus z is shown in the upper-left inset of
Fig. 1. Before starting our discussion, let us elucidate first the
definition of a Brewster angle in a complicated medium such
as an anisotropic medium, chiral medium, and magnetized
plasma. According to Refs. �29,30�, a Brewster angle can be
defined as the angle of incidence that makes the copolarized
reflectivity null �i.e., Rjj =0, j=1, 2� when a monochromatic
plane wave of arbitrary polarization is incident. This means
that when an arbitrarily polarized monochromatic plane
wave is incident at a Brewster angle, the reflected wave ei-
ther does not occur or becomes a linearly polarized wave.
However, when the copolarized reflectivity never reaches
zero in, e.g., an absorbing medium, we can only define the
pseudo-Brewster angle at which the copolarized reflectivity
attains its minimum �the dip of reflectivity�.

Figure 2 displays the dependences of the GH shifts and
reflectivity on the angle of incidence for L=2� and �c
=0.3�0. It is evident from Fig. 2�a� that when the incident
wave is s polarized, the copolarized reflectivity R11 ap-
proaches its minimum �very close to zero� at �=35.1°, that
is, the pseudo-Brewster angle, where the corresponding GH
shift �11 arrives at the negative maximum �about −16��. This
is because when a plane wave is incident at a pseudo-
Brewster angle �or Brewster angle�, the reflected wave un-
dergoes an abrupt change of phase with respect to the inci-
dent wave �31�. The GH shift �21, which corresponds to the
cross-polarized reflectivity R21, attains its local positive
maximum at the pseudo-Brewster angle �see the arrow “1” in
Fig. 2�b��. This indicates that the lateral separation between
the s- and p-polarized components of the reflected wave is
0.66�− �−16�� when an s-polarized wave is incident at the
pseudo-Brewster angle. In addition, we can see from the ar-

GOOS-HÄNCHEN SHIFTS OF THE REFLECTED WAVES … PHYSICAL REVIEW E 81, 016603 �2010�

016603-3



row “2” in the Fig. 2�b� that �21 reaches a positive maximum
at �=43.9°, which is in the vicinity of the maximum of R21.
When the incident wave is p polarized, the pseudo-Brewster
angle is identical to that for the s-polarized incident wave
�see Fig. 2�c��. As expected, �22 approaches the negative
maximum at this angle, albeit very small. At the pseudo-
Brewster angle, both the copolarized GH shifts ��11 and �22�
are negative, while the cross-polarized GH shifts �12�21� are
positive. It is also clear from Figs. 2�a�–2�c� that although
the total internal reflection takes place near �=75° for both
the s- and p-polarized incident waves, no large GH shifts
exhibit, as is distinct from isotropic homogenous media.

As for the negative GH shifts occurring here, it can be
understood in the following. Usually, a negative GH shift can
occur easily in a negatively refractive material; however, in
fact, it can also appear under other circumstances, such as
absorbing media �28,31�, a metallic quantum well �11�, and a
plasma �32�. It was reported that the backward wave may be
supported by a multilayered structure that contains at least
one layer with a negative permittivity �6�. The inhomoge-
neous stratified plasma may be treated as a multilayer which
consists of a large number of layers with continuously vary-

ing permittivity. We can find readily from Eqs. �4� and �12�
that when z /L�0.82, Re��1��0, while Re��2��0 and
Re��3��0. This implies that our structure can support a
backward wave and thus it is possible for a negative GH shift
to occur in the structure. Noticeably, the field component Ez
is resonantly enhanced at z /L=0.82 due to Re��1�=0 �see
Eq. �10��, which might cause intriguing physical effects. To
shed further light on the negative GH shift, taking �11 in Fig.
2�a� as an example, we plot in Fig. 3 the variation of the
lateral component 
Sx�z�� of the time-averaged Poynting vec-
tor with the coordinate z for �=35.1°. Indeed, at z /�=1.64
�corresponding to z /L=0.82� occurs a giant negative-energy
flow, which should exactly lead to the large negative GH
shift �−16��. The insets �a� and �b� of Fig. 3 show the dis-
tributions of energy flow 
Sx�z�� on both the sides of
z /�=1.64. Obviously, 
Sx�z�� flows nearly inversely on both
the sides. Additionally, the power flow inside the plasma
slab is worked out as 
0P=−835.1 in terms of P
= �1 /2��0

L
Sx�z��dz.
The external static magnetic field imposes an influence on

the plasma’s permittivity through the electron cyclotron fre-
quency �c and thus on GH shifts. For the case �c��0, in the
calculation, we find that the weaker external magnetic field
hardly affects the GH shifts. Therefore, in what follows, we
only focus on these �c �or external magnetic fields� that
strikingly affect the GH shifts. Figure 4 illustrates the varia-
tions of the GH shifts with �c for L=2� and �=35.1°, 43.9°,
and 75°, which are the angles involved above. We can see
from Fig. 4�a� that for �=35.1°, the GH shift �11 reaches the
negative maximum at �c /�0=0.3, which concurs exactly
with the result in Fig. 2�a�; for �=43.9°, the shift comes to
the negative maximum at �c /�0=0.380. It is evident from
Figs. 4�a�–4�c� that for �=75°, the shifts saliently fluctuate
between the positive and negative values as the external

0 10 20 30 40 50 60 70 80

−16

−12

−8

−4

0

4

θ (deg)

∆ 11
/λ

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

R
11

0 10 20 30 40 50 60 70 80

−0.5

0

0.5

1

1.5

2

∆ 12
(2

1)
/λ

0 10 20 30 40 50 60 70 80
0

0.08

0.16

0.24

0.32

0.4

R
12

(2
1)

0 10 20 30 40 50 60 70 80

−0.5

−0.25

0

0.25

0.5

∆ 22
/λ

0 10 20 30 40 50 60 70 80
0

0.25

0.5

0.75

1

θ (deg)

R
22

(a)

(b)

(c)

1

2

FIG. 2. Dependences of the GH shifts and reflectivity on the
angle of incidence for L=2� and �c=0.3�0 in the case of the linear
electron-density profile. Dotted and solid lines correspond to the
GH shifts and reflectivity, respectively. �a� and �c� for the copolar-
ized GH shifts and reflectivity and �b� for the cross-polarized GH
shifts and reflectivity.
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magnetic field increases. The changes of the GH shift �12�21�
are particularly observable, with its positive and negative
maxima at �c /�0=0.592 and 0.797, respectively. As a result,
for such an angle of incidence, we can switch the GH shifts
between the positive and negative values by adjusting the
external magnetic field. In contrast, for �=35.1° and 43.9°,
the stronger external magnetic field ��c /�0�0.45� has
hardly effects on the GH shifts, from which we can conjec-
ture that when the angles of incidence are smaller, the stron-
ger external magnetic field exerts practically no influences
on the GH shifts.

Next, we discuss briefly the effects of the thickness of the
plasma slab on the GH shifts. Figure 5 shows the variations
of the GH shifts with L for �c=0.3�0 and �=35.1°, 43.9°,
and 75°. It can be seen from the figure that for �=35.1°, the
GH shifts �11, �12�21�, and �22 all exhibit the near-periodical
oscillation with the slab’s thickness and both the copolarized
GH shifts are negative and the cross-polarized GH shift is
positive. In particular, it should be noted that �11 becomes
considerably large and negative for �=35.1°, while for �
=43.9° and 75°, the slab’s thickness has a tiny impact on the
GH shifts. These results might be interpreted as follows
�5,12,33�. A slab structure is often analogous to a Fabry-

Perot optical interferometer, where the two interfaces of the
slab behave like the partially transparent mirrors. Therefore,
the GH shift �11��22� is composed of two parts: one comes
from the interference between two reflected waves from the
two interfaces of the plasma slab and the other arises from
the interference of the reflected wave at the first interface
with the incident wave. The former contains a periodical
factor with respect to the slab’s thickness L and hence the
interference leads to the near-periodical oscillation of the GH
shift with L; the latter is proportional to L so that when L
satisfies the constructive interference condition, the GH shift
is suppressed and vice versa. The former dominates the GH
shift when the angle of incidence is smaller, otherwise the
latter is dominant. Since in this case the former is dominant
for �=35.1°, the near-periodical oscillation of the GH shift
with L occurs. However, due to the polarization conversion,
the incident TE �TM� wave will not interfere with the re-
flected TM �TE� wave and then the cross-polarized GH shift
�12�21� can only originate from the interference among mul-
tiply reflected waves from the two boundaries. Therefore, the
near-periodical oscillation of �12�21� with L is kept; mean-
while, this seems to be why �12�21� becomes larger for the
higher reflectivity R12�21�, as can be seen from the arrows 1
and 2 in Fig. 2�b�.
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B. Parabolic electron-density profile

In this case, let f�z� have the form

f�z� = 1 – 2� z

L
−

1

2
	2

, 0 � z � L , �13�

the plot of which versus z is shown in the upper-left inset of
Fig. 1. Here, f�z� is chosen such that it has the same maxi-
mum and minimum as the linear density profile. We depict in
Fig. 6 the dependences of the GH shifts and reflectivity on
the angle of incidence for the same parameters as in Fig. 2.
We can see from Figs. 6�a�–6�c� that the copolarized GH
shifts �11 and �22 vary similarly and whether the incident
wave is s or p polarized, there is a pseudo-Brewster angle at
�=37.1°, where both negative maxima of �11 and �22 occur
exactly. We can also see from Fig. 6�b� that a peak and dip of
the cross-polarized GH shifts �12�21� are located near the
pseudo-Brewster angle and at �=31.3°, respectively. This re-
sult can be understood from the corresponding peak and dip
of the reflectivity. In addition, no remarkable differences in
the magnitude among �11, �12�21�, and �22 can be observed,

which is different from the linear density profile.
Figure 7 shows the dependences of the GH shifts on �c

for L=2� and �=31.3°, 37.1°, and 75°. Clearly, the stronger
external magnetic field ��c /�0�0.45� exerts practically no
influences on the GH shifts for a smaller angle of incidence,
as is the same as the linear electron-density profiles. More
interestingly, the external magnetic field affects both the co-
polarized GH shifts in a similar manner, except for a positive
maximum near �c /�0=0.872 for �22. Apparently, �11 and
�22 for �=31.3°, 37.1°, and 75° reach the negative maxima
near �c /�0=0.230, 0.30, and 0.60, respectively, as indicated
in Figs. 7�a�–7�c�. For the three angles of incidence, the
cross-polarized GH shifts vary in a similar scheme with the
external magnetic field, viz., the positive and negative GH
shifts with nearly equal magnitude can be achieved when �c
changes in a narrower range, as seen in Fig. 7�b�.

The dependences of the GH shifts on the slab’s thickness
L for �c=0.3�0, and �=31.3°, 37.1°, and 75° are indicated
in Fig. 8. Unlike the linear electron-density profile, the varia-
tions of the GH shifts with L do not manifest oscillations,
which might be due to the fact that the nonlinear density
profile destroys the periodicity of the GH shift with respect
to L. It is distinct that although the GH shifts �11 and �12�21�
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FIG. 6. Dependences of the GH shifts and reflectivity on the
angle of incidence for the same parameters as in Fig. 2, but for the
parabolic electron-density profile. Dotted and solid lines correspond
to the GH shifts and reflectivity, respectively. �a� and �c� for the
copolarized GH shifts and reflectivity and �b� for the cross-
polarized GH shifts and reflectivity.
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FIG. 7. Dependences of the GH shifts on �c for L=2� and �
=31.3°, 37.1°, and 75°. The electron-density profile is the same as
in Fig. 6. Dashed, solid, and dotted lines correspond to the GH
shifts for �=31.3°, 37.1°, and 75°, respectively. �a� and �c� for the
copolarized GH shifts and �b� for the cross-polarized GH shifts.
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exist for �=75°, they are very small and nearly unchanged
with the slab’s thickness; for �=31.3°, 37.1°, the positive or
negative GH shifts are always available by adjusting the
slab’s thickness. It is especially noticeable that the giant

negative GH shift �22�=−46.76�� occurs at L=3.96� for �
=31.3°. Actually, the rather considerable positive and nega-
tive �22 are also attainable for �=37.1° on altering the slab’s
thickness, as can be seen in the magnified inset of Fig. 8�c�.

IV. CONCLUSIONS

In conclusion, by use of the invariant imbedding theory,
we have discussed theoretically the GH shifts of the reflected
waves from a cold, inhomogeneous, and magnetized plasma
slab. Bearing on the linear and parabolic electron-density
profiles, we have demonstrated numerically the dependences
of the co- and cross-polarized GH shifts on the angle of
incidence, external static magnetic field, and thickness of the
plasma slab. The results suggest that when the wave is inci-
dent at a pseudo-Brewster, the copolarized GH shifts can
attain their negative maxima, which arises from the abrupt
change of phases suffered by the reflected waves. The GH
shifts can be switched between the positive and negative val-
ues at certain angles of incidence by adjusting the external
magnetic field; particularly, the large and negative GH shifts
are obtained for some external magnetic fields. The different
electron-density profiles of plasma can give rise to the very
different dependences of the GH shifts on the angle of inci-
dence, external magnetic field, and the slab’s thickness. By
way of example, we also provide an explanation for the giant
negative GH shift �11 in the linear electron-density profile
case. Of particular interest is that without changing the struc-
ture of the plasma slab, the GH shifts can be manipulated by
modifying the angle of incident or the external magnetic
field.
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